منابع مشابه
The Faber Polynomials for Circular Sectors
The Faber polynomials for a region of the complex plane, which are of interest as a basis for polynomial approximation of analytic functions, are determined by a conformai mapping of the complement of that region to the complement of the unit disc. We derive this conformai mapping for a circular sector {;: \z\ < 1, |argz| < i/a}, where a > 1, and obtain a recurrence relation for the coefficient...
متن کاملLattice Paths and Faber Polynomials
The rth Faber polynomial of the Laurent series f(t) = t + f0 + f1/t + f2/t + · · · is the unique polynomial Fr(u) of degree r in u such that Fr(f) = tr + negative powers of t. We apply Faber polynomials, which were originally used to study univalent functions, to lattice path enumeration.
متن کاملDerivatives of Faber Polynomials and Markov Inequalities
We study asymptotic behavior of the derivatives of Faber polynomials on a set with corners at the boundary. Our results have applications to the questions of sharpness of Markov inequalities for such sets. In particular, the found asymptotics are related to a general Markov-type inequality of Pommerenke and the associated conjecture of Erdős. We also prove a new bound for Faber polynomials on p...
متن کاملFaber Polynomials of Matrices for Non-convex Sets
It has been recently shown that ||Fn(A)|| ≤ 2, where A is a linear continuous operator acting in a Hilbert space, and Fn is the Faber polynomial of degree n corresponding to some convex compact E ⊂ C containing the numerical range of A. Such an inequality is useful in numerical linear algebra, it allows for instance to derive error bounds for Krylov subspace methods. In the present paper we ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1987
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1987-0890264-4